Out-of-plane structural flexibility of phosphorene.

نویسندگان

  • Gaoxue Wang
  • G C Loh
  • Ravindra Pandey
  • Shashi P Karna
چکیده

Phosphorene has been rediscovered recently, establishing itself as one of the most promising two-dimensional group-V elemental monolayers with direct band gap, high carrier mobility, and anisotropic electronic properties. In this paper, surface buckling and its effect on its electronic properties are investigated by using molecular dynamics simulations together with density functional theory calculations. We find that phosphorene shows superior structural flexibility along the armchair direction allowing it to have large curvatures. The semiconducting and direct band gap nature are retained with buckling along the armchair direction; the band gap decreases and transforms to an indirect band gap with buckling along the zigzag direction. The structural flexibility and electronic robustness along the armchair direction facilitate the fabrication of devices with complex shapes, such as folded phosphorene and phosphorene nano-scrolls, thereby offering new possibilities for the application of phosphorene in flexible electronics and optoelectronics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GENERALIZED FLEXIBILITY-BASED MODEL UPDATING APPROACH VIA DEMOCRATIC PARTICLE SWARM OPTIMIZATION ALGORITHM FOR STRUCTURAL DAMAGE PROGNOSIS

This paper presents a new model updating approach for structural damage localization and quantification. Based on the Modal Assurance Criterion (MAC), a new damage-sensitive cost function is introduced by employing the main diagonal and anti-diagonal members of the calculated Generalized Flexibility Matrix (GFM) for the monitored structure and its analytical model. Then, ...

متن کامل

Electronic structure engineering of various structural phases of phosphorene.

We report the tailoring of the electronic structures of various structural phases of phosphorene (α-P, β-P, γ-P and δ-P) based homo- and hetero-bilayers through in-plane mechanical strains, vertical pressure and transverse electric field by employing density functional theory. In-plane biaxial strains have considerably modified the electronic bandgap of both homo- and hetero-bilayers while vert...

متن کامل

Two-dimensional silicon and carbon monochalcogenides with the structure of phosphorene

Phosphorene has recently attracted significant interest for applications in electronics and optoelectronics. Inspired by this material an ab initio study was carried out on new two-dimensional binary materials with a structure analogous to phosphorene. Specifically, carbon and silicon monochalcogenides have been considered. After structural optimization, a series of binary compounds were found ...

متن کامل

Tuning the Schottky contacts in the phosphorene and graphene heterostructure by applying strain.

The structures and electronic properties of the phosphorene and graphene heterostructure are investigated by density functional calculations using the hybrid Heyd-Scuseria-Ernzerhof (HSE) functional. The results show that the intrinsic properties of phosphorene and graphene are preserved due to the weak van der Waals contact. But the electronic properties of the Schottky contacts in the phospho...

متن کامل

Adsorption of metal adatoms on single-layer phosphorene.

Single- or few-layer phosphorene is a novel two-dimensional direct-bandgap nanomaterial. Based on first-principles calculations, we present a systematic study on the binding energy, geometry, magnetic moment and electronic structure of 20 different adatoms adsorbed on phosphorene. The adatoms cover a wide range of valences, including s and p valence metals, 3d transition metals, noble metals, s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 27 5  شماره 

صفحات  -

تاریخ انتشار 2016